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CHAPTER 3 
 
SOLUTIONS TO PROBLEMS 
 
3.2 (i) hsperc is defined so that the smaller it is, the lower the student’s standing in high 
school.  Everything else equal, the worse the student’s standing in high school, the lower is 
his/her expected college GPA. 
 
 (ii) Just plug these values into the equation: 
 

colgpa  = 1.392 − .0135(20) + .00148(1050) = 2.676. 
 

 (iii) The difference between A and B is simply 140 times the coefficient on sat, because 
hsperc is the same for both students.  So A is predicted to have a score .00148(140) ≈  .207 
higher. 
 
 (iv) With hsperc fixed, colgpaΔ  = .00148Δsat.  Now, we want to find Δsat such that 

colgpaΔ  = .5, so .5 = .00148(Δsat) or Δsat = .5/(.00148) ≈  338.  Perhaps not surprisingly, a 
large ceteris paribus difference in SAT score – almost two and one-half standard deviations – is 
needed to obtain a predicted difference in college GPA or a half a point. 
 
3.4 (i) If adults trade off sleep for work, more work implies less sleep (other things equal), so 

1β  < 0. 
 
 (ii) The signs of 2β  and 3β  are not obvious, at least to me.  One could argue that more 
educated people like to get more out of life, and so, other things equal, they sleep less ( 2β  < 0).  
The relationship between sleeping and age is more complicated than this model suggests, and 
economists are not in the best position to judge such things. 
 
 (iii) Since totwrk is in minutes, we must convert five hours into minutes:  Δtotwrk = 
5(60) = 300.  Then sleep is predicted to fall by .148(300) = 44.4 minutes.  For a week, 45 
minutes less sleep is not an overwhelming change. 
 
 (iv) More education implies less predicted time sleeping, but the effect is quite small.  If 
we assume the difference between college and high school is four years, the college graduate 
sleeps about 45 minutes less per week, other things equal. 
 
 (v) Not surprisingly, the three explanatory variables explain only about 11.3% of the 
variation in sleep.   One important factor in the error term is general health.  Another is marital 
status, and whether the person has children.  Health (however we measure that), marital status, 
and number and ages of children would generally be correlated with totwrk.  (For example, less 
healthy people would tend to work less.) 
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3.6 (i) No.  By definition, study + sleep + work + leisure = 168.  Therefore, if we change study, 
we must change at least one of the other categories so that the sum is still 168. 
 
 (ii) From part (i), we can write, say, study as a perfect linear function of the other 
independent variables:  study = 168 − sleep − work − leisure. This holds for every observation, 
so MLR.3 violated. 
 
 (iii) Simply drop one of the independent variables, say leisure: 
 

GPA = 0β  + 1β study + 2β sleep + 3β work + u. 
 

Now, for example, 1β  is interpreted as the change in GPA when study increases by one hour, 
where sleep, work, and u are all held fixed.  If we are holding sleep and work fixed but increasing 
study by one hour, then we must be reducing leisure by one hour.  The other slope parameters 
have a similar interpretation. 
 
3.8 Only (ii), omitting an important variable, can cause bias, and this is true only when the 
omitted variable is correlated with the included explanatory variables.  The homoskedasticity 
assumption, MLR.5, played no role in showing that the OLS estimators are unbiased.  
(Homoskedasticity was used to obtain the usual variance formulas for the ˆ

jβ .)  Further, the 
degree of collinearity between the explanatory variables in the sample, even if it is reflected in a 
correlation as high as .95, does not affect the Gauss-Markov assumptions.  Only if there is a 
perfect linear relationship among two or more explanatory variables is MLR.3 violated. 
 
3.10 From equation (3.22) we have  
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where the 1îr  are defined in the problem.  As usual, we must plug in the true model for yi: 
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The numerator of this expression simplifies because 1
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∑ .  These all follow from the fact that the 1îr  are the residuals from the regression of 1ix  on 

2ix :  the 1îr  have zero sample average and are uncorrelated in sample with 2ix .  So the numerator 

of 1β  can be expressed as 
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Putting these back over the denominator gives 
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Conditional on all sample values on x1, x2, and x3, only the last term is random due to its 
dependence on ui.  But E(ui) = 0, and so  
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which is what we wanted to show.  Notice that the term multiplying 3β  is the regression 
coefficient from the simple regression of xi3 on 1îr . 
 
3.11 (i) 1β  < 0 because more pollution can be expected to lower housing values; note that 1β  is 
the elasticity of price with respect to nox.  2β  is probably positive because rooms roughly 
measures the size of a house.  (However, it does not allow us to distinguish homes where each 
room is large from homes where each room is small.) 
 
 (ii) If we assume that rooms increases with quality of the home, then log(nox) and rooms 
are negatively correlated when poorer neighborhoods have more pollution, something that is 
often true.  We can use Table 3.2 to determine the direction of the bias.  If 2β  > 0 and 

Corr(x1,x2) < 0, the simple regression estimator 1β  has a downward bias.  But because 1β  < 0, 

this means that the simple regression, on average, overstates the importance of pollution.  [E( 1β ) 
is more negative than 1β .] 
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 (iii) This is what we expect from the typical sample based on our analysis in part (ii).  The 
simple regression estimate, −1.043, is more negative (larger in magnitude) than the multiple 
regression estimate, −.718.  As those estimates are only for one sample, we can never know 
which is closer to 1β .  But if this is a “typical” sample, 1β  is closer to −.718. 
 

3.12 (i) For notational simplicity, define szx = 
1

( ) ;
n

i i
i

z z x
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covariance between z and x because we do not divide by n – 1, but we are only using it to 
simplify notation.  Then we can write 1β  as 
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This is clearly a linear function of the yi:  take the weights to be wi = (zi − z )/szx.  To show 
unbiasedness, as usual we plug yi = 0β  + 1β xi + ui into this equation, and simplify: 
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where we use the fact that 
1

( )
n

i
i

z z
=

−∑  = 0 always.  Now szx is a function of the zi and xi and the 

expected value of each ui is zero conditional on all zi and xi in the sample.  Therefore, conditional 
on these values,  
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because E(ui) = 0 for all i. 
 
 (ii) From the fourth equation in part (i) we have (again conditional on the zi and xi in the 
sample), 
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because of the homoskedasticity assumption [Var(ui) = σ2 for all i].  Given the definition of szx, 
this is what we wanted to show. 
 

 (iii) We know that Var( 1̂β ) = σ2/ 2
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−∑   When we multiply through by σ2 we get Var( 1β )  ≥ Var( 1̂β ), which is what 

we wanted to show. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C3.1 (i) Probably 2β  > 0, as more income typically means better nutrition for the mother and 
better prenatal care. 
 
 (ii) On the one hand, an increase in income generally increases the consumption of a good, 
and cigs and faminc could be positively correlated.  On the other, family incomes are also higher 
for families with more education, and more education and cigarette smoking tend to be 
negatively correlated.  The sample correlation between cigs and faminc is about −.173, indicating 
a negative correlation. 
 
 (iii) The regressions without and with faminc are 
 
 119.77 .514bwght cigs= −  

 21,388, .023n R= =  
and 
 116.97 .463 .093bwght cigs faminc= − +  

 21,388, .030.n R= =  



 

 
This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. This may not be resold, copied, 

or distributed without the prior consent of the publisher. 
 

14

The effect of cigarette smoking is slightly smaller when faminc is added to the regression, but the 
difference is not great.  This is due to the fact that cigs and faminc are not very correlated, and 
the coefficient on faminc is practically small.  (The variable faminc is measured in thousands, so 
$10,000 more in 1988 income increases predicted birth weight by only .93 ounces.) 
 
C3.3 (i) The constant elasticity equation is 
 
 log( ) 4.62 .162 log( ) .107 log( )salary sales mktval= + +  

 2177, .299.n R= =  
 
 (ii) We cannot include profits in logarithmic form because profits are negative for nine of 
the companies in the sample.  When we add it in levels form we get 
 
 log( ) 4.69 .161 log( ) .098 log( ) .000036salary sales mktval profits= + + +  

 2177, .299.n R= =  
 

The coefficient on profits is very small. Here, profits are measured in millions, so if profits 
increase by $1 billion, which means profitsΔ  = 1,000 – a huge change – predicted salary 
increases by about only 3.6%.  However, remember that we are holding sales and market value 
fixed. 
 Together, these variables (and we could drop profits without losing anything) explain 
almost 30% of the sample variation in log(salary).  This is certainly not “most” of the variation. 
 
 (iii) Adding ceoten to the equation gives 
 

log( ) 4.56 .162 log( ) .102 log( ) .000029 .012salary sales mktval profits ceoten= + + + +  

 2177, .318.n R= =  
 

This means that one more year as CEO increases predicted salary by about 1.2%. 
 
 (iv) The sample correlation between log(mktval) and profits is about .78, which is fairly 
high.  As we know, this causes no bias in the OLS estimators, although it can cause their 
variances to be large.  Given the fairly substantial correlation between market value and firm 
profits, it is not too surprising that the latter adds nothing to explaining CEO salaries.  Also, 
profits is a short term measure of how the firm is doing while mktval is based on past, current, 
and expected future profitability. 
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C3.5  The regression of educ on exper and tenure yields 
 
 educ = 13.57 − .074 exper + .048 tenure + 1̂r . 

 n  =  526,   R2  =  .101. 
 

Now, when we regress log(wage) on 1̂r  we obtain 
 
 log( )wage  = 1.62 + .092 1̂r  

 n  =  526,   R2  =  .207. 
 

As expected, the coefficient on 1̂r  in the second regression is identical to the coefficient on educ 
in equation (3.19).  Notice that the R-squared from the above regression is below that in (3.19).  
In effect, the regression of log(wage) on 1̂r  explains log(wage) using only the part of educ that is 
uncorrelated with exper and tenure; separate effects of exper and tenure are not included. 
 
C3.7 (i) The results of the regression are 
 
 10 20.36  6.23 log( )  .305 math expend lnchprg= − + −  

 n  =  408,   R2  =  .180. 
  
The signs of the estimated slopes imply that more spending increases the pass rate (holding 
lnchprg fixed) and a higher poverty rate (proxied well by lnchprg) decreases the pass rate 
(holding spending fixed).  These are what we expect. 
 
 (ii) As usual, the estimated intercept is the predicted value of the dependent variable when 
all regressors are set to zero.  Setting lnchprg = 0 makes sense, as there are schools with low 
poverty rates.  Setting log(expend) = 0 does not make sense, because it is the same as setting 
expend = 1, and spending is measured in dollars per student.  Presumably this is well outside any 
sensible range.  Not surprisingly, the prediction of a 20−  pass rate is nonsensical. 
 
 (iii) The simple regression results are 
 
 10 69.34  11.16 log( )math expend= − +  

 n  =  408,   R2  =  .030 
and the estimated spending effect is larger than it was in part (i) – almost double. 
 
 (iv) The sample correlation between lexpend and lnchprg is about .19− , which means that, 
on average, high schools with poorer students spent less per student. This makes sense, 
especially in 1993 in Michigan, where school funding was essentially determined by local 
property tax collections. 
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 (v) We can use equation (3.23). Because Corr(x1,x2) < 0, which means 1 0δ < , and 2

ˆ 0β < , 

the simple regression estimate, 1β , is larger than the multiple regression estimate, 1̂β . Intuitively, 
failing to account for the poverty rate leads to an overestimate of the effect of spending. 
 
C3.9 (i) The estimated equation is 
 

2

4.55  2.17 .0059  15.36 
4,268,   .0834

gift mailsyear giftlast propresp
n R

= − + + +

= =
 

The R-squared is now about .083, compared with about .014 for the simple regression case. 
Therefore, the variables giftlast and propresp help to explain significantly more variation in gifts 
in the sample (although still just over eight percent). 
 
 (ii) Holding giftlast and propresp fixed, one more mailing per year is estimated to increase 
gifts by 2.17 guilders. The simple regression estimate is 2.65, so the multiple regression estimate 
is somewhat smaller. Remember, the simple regression estimate holds no other factors fixed. 
 
 (iii) Because propresp is a proportion, it makes little sense to increase it by one. Such an 
increase can happen only if propresp goes from zero to one. Instead, consider a .10 increase in 
propresp, which means a 10 percentage point increase. Then, gift is estimated to be 15.36(.1) ≈ 
1.54 guilders higher. 
 
 (iv) The estimated equation is 
 

2

7.33  1.20 .261  16.20 .527 
4,268,   .2005

gift mailsyear giftlast propresp avggift
n R

= − + − + +

= =
 

 
After controlling for the average past gift level, the effect of mailings becomes even smaller: 
1.20 guilders, or less than half the effect estimated by simple regression. 
 
 (v) After controlling for the average of past gifts – which we can view as measuring the 
“typical” generosity of the person and is positively related to the current gift level – we find that 
the current gift amount is negatively related to the most recent gift. A negative relationship 
makes some sense, as people might follow a large donation with a smaller one. 
 


